
1. Basic SQL Queries

�� Select All Data

Query to retrieve all columns from the table.users

1

2

SELECT
FROM

*
users;

�� Select Specific Column

Retrieve only the column from the table.first_name customers

1

2

SELECT
FROM

first_name
customers;

�� Filter Records by Condition

Fetch all users where the first name is "john" from the table.user_details

1

2

3

SELECT
FROM
WHERE

 *

 user_details

 first_name = 'john';

�� Sort Records

Get all product names sorted by price in descending order from the products
table.

1

2

3

SELECT
FROM
ORDER

 product_name

 products

 BY price DESC;

�� Filter Data by Range

Retrieve all employees whose age is between 25 and 40 from the
table.

employees

1

2

3

SELECT
FROM
WHERE

 *

 employees

 age BETWEEN 25 AND 40;

�� Find Null Values

Select users from the table who don't have an email address.customers

1

2

3

SELECT
FROM
WHERE

 *

 customers

 email IS NULL;

�� Remove Duplicate Entries

Fetch unique from the departments table.departments

1

2

SELECT
FROM

DISTINCT department

departments;

2. Aggregation Functions

�� Count Records

Count the total number of orders from the table.orders

1

2

SELECT
FROM

 COUNT(*)

 orders;

�� Sum Column Values

Calculate the total sales from the table.sales

1

2

SELECT
FROM

 SUM(sale_amount)

 sales;

��� Find Maximum Value

Retrieve the highest salary from the table.salaries

1

2

SELECT
FROM

 MAX(salary)

 salaries;

��� Find Minimum Value

Retrieve the lowest score from the table.exam_scores

1

2

SELECT
FROM

 MIN(score)

 exam_scores;

��� Calculate Average

Get the average order amount from the table.orders

1

2

SELECT
FROM

 AVG(order_amount)

 orders;

3. Grouping

��� Group by and Count

Count the number of users per country from the table.users

1

2

3

SELECT

FROM
GROUP BY

country, COUNT(*)
users

 country;

��� Group by and Sum

Calculate the total sales per product category from the table.product_sales

1

2

3

SELECT
FROM

GROUP BY

category, SUM(sales)

product_sales

 category;

��� Group by and Filter (HAVING)

Get departments where the total salary is greater than $1,000,000.

1

2

3

4

SELECT
FROM
GROUP BY
HAVING SUM

 department, SUM(salary)

 salaries

 department

(salary) > 1000000;

4. Joining Tables

��� Inner Join

Retrieve employee names along with their department names.

1

2

3

4

SELECT
FROM
INNER JOIN
ON

 e.first_name, d.department_name

 employees e

 departments d

 e.department_id = d.department_id;

��� Left Join

Get all employees and their assigned projects, even if some employees don’t have
projects.

1

2

3

4

SELECT
FROM
LEFT JOIN
ON

 e.first_name, p.project_name

 employees e

 projects p

 e.employee_id = p.employee_id;

��� Right Join

List all projects and the employees assigned to them, including projects without
employees.

1

2

3

4

SELECT
FROM
RIGHT JOIN
ON

 p.project_name, e.first_name

 projects p

 employees e

 p.project_id = e.project_id;

��� Full Outer Join

Retrieve all employees and all projects, including those with no matching records.

1

2

3

4

SELECT
FROM
FULL OUTER JOIN
ON

 e.first_name, p.project_name

 employees e

 projects p

 e.employee_id = p.employee_id;

5. Subqueries

��� Subquery in WHERE

Fetch all products with a price greater than the average price.

1

2

3

SELECT
FROM
WHERE

 *

 products

 price > (SELECT AVG(price) FROM products);

��� Subquery in SELECT

Retrieve employee names and their corresponding department names using a
subquery.

1

2

3

4

5

6

SELECT

FROM

 first_name,

 (SELECT department_name

 FROM departments

 WHERE department_id = employees.department_id) AS
department

 employees;

��� Subquery in FROM

Find the total sales per product using a subquery.

1

2

3

4

SELECT
FROM
GROUP BY
HAVING SUM

 department, SUM(salary)

 salaries

 department

(salary) > 1000000;

PostgreSQL Mastery Cheat Sheet
dataford.io

6. Window Functions

��� Rank Over Partition

Rank products based on sales within each category.

1

2

3

4

SELECT
OVER

AS
FROM

 product_id, category_id, sales_amount,

 RANK() (PARTITION BY category_id ORDER BY
sales_amount DESC) rank

 products;

��� Running Total

Calculate the cumulative sales for each product over time.

1

2

3

4

SELECT
OVER AS

FROM

 product_id, sale_date, sales_amount,

 SUM(sales_amount) (ORDER BY sale_date)
running_total

 sales;

��� Lag Function

Find the previous order amount for each user.

1

2

3

4

SELECT
OVER

ORDER BY AS
FROM

 user_id, order_date, order_amount,

 LAG(order_amount, 1) (PARTITION BY user_id

 order_date) previous_order

 orders;

7. String Functions

��� Concatenate Strings

Combine first name and last name to display full name.

1

2

SELECT CONCAT AS
FROM

(first_name, ' ', last_name) full_name

 users;

��� String Length

Get the length of the product name.

1

2

SELECT LENGTH
FROM

(product_name)

 products;

��� Substring

Extract the first 3 characters of the product name.

1

2

SELECT SUBSTRING
FROM

(product_name, 1, 3)

 products;

��� Upper and Lower Case

Display customer names in uppercase.

1

2

SELECT UPPER
FROM

(customer_name)

 customers;

8. Date and Time Functions

��� Current Date

Retrieve all users who joined today.

1

2

3

SELECT
FROM
WHERE

 *

 users

 join_date = CURRENT_DATE;

��� Extract Year

Get the year from the column.join_date

1

2

SELECT EXTRACT
FROM

(YEAR FROM join_date)

 users;

��� Date Difference

Calculate the number of days between and today.order_date

1

2

SELECT
FROM

 age(CURRENT_DATE, order_date)

 orders;

��� Add Date Interval

Find all users who signed up in the last 30 days.

1

2

3

SELECT
FROM
WHERE

 *

 users

 join_date > CURRENT_DATE - INTERVAL '30 days';

9. Advanced SQL

��� Case Statements

Display gender as 'M' or 'F' based on the column.gender

1

2

3

4

5

6

SELECT
CASE

WHEN
WHEN

END
FROM

 first_name, last_name,

 gender = 'male' THEN 'M'

 gender = 'female' THEN 'F'

 AS gender_abbr

 users;

��� Coalesce Function

Replace null values in the column with 'unknown'.address

1

2

SELECT COALESCE
FROM

(address, 'unknown')

 customers;

��� Casting and Conversion

Convert to a decimal value with 2 decimal places.order_amount

1

2

SELECT CAST
FROM

(order_amount AS DECIMAL(10, 2))

 orders;

��� Recursive Query

Generate a sequence of numbers from 1 to 10.

1

2

3

4

5

6

7

8

9

WITH
SELECT
UNION ALL

SELECT
FROM
WHERE

SELECT
FROM

 numbers AS (

 1 AS number

 number + 1

 numbers

 number < 10

)

 number

 numbers;

��� Cross Join Example

Retrieve a combination of every employee with every project.

1

2

3

SELECT
FROM
CROSS JOIN

 e.first_name, p.project_name

 employees e

 projects p;

��� Cross Join with Filter

Perform a cross join between employees and projects, but only show combinations
where the employee's department matches the project's department.

1

2

3

4

SELECT
FROM
CROSS JOIN
WHERE

 e.first_name, p.project_name

 employees e

 projects p

 e.department_id = p.department_id;

Practice Interview Questions on Dataford.io

https://dataford.io/workspace
https://dataford.io/workspace

