dataford.io

PostgreSQL Mastery Cheat Sheet

1. Basic SQL Queries

1. Select All Data

Query to retrieve all columns from the users table.

SELECT %
FROM users;

2. Select Specific Column

Retrieve only the first_name column from the customers table.

SELECT first_name
FROM customers;

3. Filter Records by Condition

Fetch all users where the first name is "john" from the user_details table.

SELECT =%
FROM user_details
WHERE first_name = 'john';

) Dataford

2. Aggregation Functions

8. Count Records

Count the total number of orders from the orders table.

SELECT COUNT (%)
FROM orders;

9. Sum Column Values

Calculate the total sales from the sales table.

SELECT SUM(sale_amount)
FROM sales;

10. Find Maximum Value

Retrieve the highest salary from the salaries table.

SELECT MAX(salary)
FROM salaries;

4. Sort Records

Get all product names sorted by price in descending order from the products
table.

SELECT product_name
FROM products
ORDER BY price DESC;

5. Filter Data by Range

Retrieve all employees whose age is between 25 and 40 from the emp loyees
table.

SELECT x
FROM employees
WHERE age BETWEEN 25 AND 40;

6. Find Null Values

Select users from the customers table who don't have an email address.

SELECT %
FROM customers
WHERE email IS NULL;

7. Remove Duplicate Entries

Fetch unique departments from the departments table.

SELECT DISTINCT department
FROM departments;

11. Find Minimum Value

Retrieve the lowest score from the exam_scores table.

SELECT MIN(score)
FROM exam_scores;

12. Calculate Average

Get the average order amount from the orders table.

SELECT AVG(order_amount)
FROM orders;

3. Grouping

13. Group by and Count

Count the number of users per country from the users table.

SELECT country, COUNT(x)
FROM users
GROUP BY country;

14. Group by and Sum

Calculate the total sales per product category from the product_sales table.

SELECT category, SUM(sales)
FROM product_sales
GROUP BY category,

4. Joining Tables

16. Inner Join

Retrieve employee names along with their department names.

SELECT e.first_name, d.department_name
FROM employees e

INNER JOIN departments d

ON e.department_id = d.department_id;

17. Left Join

Get all employees and their assigned projects, even if some employees don't have
projects.

SELECT e.first_name, p.project_name
FROM employees e

LEFT JOIN projects p

ON e.employee_id = p.employee_id;

18. Right Join

List all projects and the employees assigned to them, including projects without
employees.

SELECT p.project_name, e.first_name
FROM projects p

RIGHT JOIN employees e

ON p.project_id = e.project_id;

19. Full Outer Join

Retrieve all employees and all projects, including those with no matching records.

SELECT e.first_name, p.project_name
FROM employees e

FULL OUTER JOIN projects p

ON e.employee_id = p.employee_id;

6. Window Functions

23. Rank Over Partition

Rank products based on sales within each category.

SELECT product_id, category_id, sales_amount,

RANK() OVER (PARTITION BY category_id ORDER BY
sales_amount DESC) AS rank
FROM products;

24. Running Total

Calculate the cumulative sales for each product over time.

SELECT product_id, sale_date, sales_amount,
SUM(sales_amount) OVER (ORDER BY sale_date) AS

running_total

FROM sales;

25. Lag Function

Find the previous order amount for each user.

SELECT user_id, order_date, order_amount,
LAG(order_amount, 1) OVER (PARTITION BY user_id

ORDER BY order_date) AS previous_order
FROM orders;

8. Date and Time Functions

30. Current Date

Retrieve all users who joined today.

SELECT %
FROM users

WHERE join_date = CURRENT_DATE;

31. Extract Year

Get the year from the join_date column.

SELECT EXTRACT(YEAR FROM join_date)
FROM users;

32. Date Difference

Calculate the number of days between order_date and today.

SELECT age(CURRENT_DATE, order_date)
FROM orders;

33. Add Date Interval

Find all users who signed up in the last 30 days.

SELECT %
FROM users
WHERE join_date > CURRENT_DATE - INTERVAL '30 days';

Practice Interview Questions on Dataford.io

15. Group by and Filter (HAVING)

Get departments where the total salary is greater than $1,000,000.

SELECT department, SUM(salary)
FROM salaries

GROUP BY department
HAVING SUM(salary) > 1000000;

5. Subqueries

20. Subquery in WHERE

Fetch all products with a price greater than the average price.

SELECT x
FROM products

WHERE price > (SELECT AVG(price) FROM products);

21. Subquery in SELECT

Retrieve employee names and their corresponding department names using a
subquery.

SELECT first_name,

(SELECT department_name

FROM departments

WHERE department_id = employees.department_id) AS
department
FROM employees;

22. Subquery in FROM

Find the total sales per product using a subquery.

SELECT department, SUM(salary)
FROM salaries

GROUP BY department
HAVING SUM(salary) > 1000000;

7. String Functions

26. Concatenate Strings

Combine first name and last name to display full name.

SELECT CONCAT(first_name, ' ', last_name) AS full_name
FROM users;

27. String Length

Get the length of the product name.

SELECT LENGTH(product_name)
FROM products;

28. Substring

Extract the first 3 characters of the product name.

SELECT SUBSTRING(product_name, 1, 3)
FROM products;

29. Upper and Lower Case

Display customer names in uppercase.

SELECT UPPER(customer_name)
FROM customers;

9. Advanced SQL

34. Case Statements

Display gender as ‘M’ or 'F' based on the gender column.

SELECT first_name, last_name,
CASE
WHEN gender = 'male' THEN 'M’
WHEN gender = 'female' THEN 'F’
END AS gender_abbr
FROM users;

35. Coalesce Function

Replace null values in the address column with 'unknown'.

SELECT COALESCE(address, 'unknown')
FROM customers;

36. Casting and Conversion

Convert order_amount to a decimal value with 2 decimal places.

SELECT CAST(order_amount AS DECIMAL(10, 2))
FROM orders;

37. Recursive Query

Generate a sequence of numbers from 1to 10.

WITH numbers AS (
SELECT 1 AS number
UNION ALL
SELECT number + 1
FROM numbers
WHERE number < 10

)

SELECT number

FROM numbers;

38. Cross Join Example

Retrieve a combination of every employee with every project.

SELECT e.first_name, p.project_name
FROM employees e
CROSS JOIN projects p;

39. Cross Join with Filter

Perform a cross join between employees and projects, but only show combinations
where the employee's department matches the project's department.

SELECT e.first_name, p.project_name
FROM employees e

CROSS JOIN projects p
WHERE e.department_id = p.department_id;

https://dataford.io/workspace
https://dataford.io/workspace

